EMRI member Prof Madeleine van Oppen wins prestigious ARC Laureate Fellowship (2019-2023)

Engineering microbes that increase coral climate resilience

An exciting proposal by Professor Madeleine van Oppen facilitated the award of a 2018 ARC Laureate Fellowship. Professor van Oppen’s program will seek to bioengineer the microalgae and bacteria that are integral to coral tissue, giving them characteristics that make them more resilient to climate change.

Coral reefs around the world are being lost at an alarming rate. Developing microbial symbionts to enhance coral climate resilience will give Australian and other coral reef ecosystems an increased chance of surviving the impact of climate change. The project will also enhance understanding of the functional roles of microbial symbionts of corals, and advance the microbial symbiosis discipline globally. Expected outcomes include healthier coral reefs through the use of more climate resilient coral stock in reef conservation and restoration initiatives.

 


Factors influencing the oral microbiome / Dr. Christina Adler (Univ. of Sydney)

Thursday 7 June
Time: 1.00pm – 2.00pm
VenueGround Floor, Geoffrey Wylie Lecture Theatre

Royal Dental Hospital of Melbourne, 720 Swanston Street, Melbourne

The oral microbiome is a dense and diverse community of microbes covering every surface of the mouth. It is increasingly recognised as being inextricably linked to oral and systemic health. Dr Christina Adler will discuss the influence of ‘nature and nurture’ on the oral microbiome in health and disease.

Dr Christina Adler is a medical scientist (BSc Hons, University Medal 2007, PhD Doctoral Research Medal 2012), and their research program focuses on understanding how the oral microbiome contributes to the maintenance of health and the development of oral diseases, particularly dental decay (caries) that is the most common chronic disease worldwide. Dr Adler’s research approach brings together diverse fields including evolution, genomics, microbiology and oral health, and they are in a unique position to span these diverse fields given their track record.

In 2012, Dr Adler completed their PhD on the evolution of the oral microbiome and human population genetics at The University of Adelaide and was awarded a Doctoral Research Medal for producing one of the highest quality PhD theses. From this, she discovered that dietary changes during human evolution shifted the oral microbiome to a caries-promoting state (Adler et al., Nature Genetics, 2013). In 2012,  Dr Adler has moved to The University of Sydney to take up a lectureship role. In this position, she has established an independent and nationally recognised research program investigating the role of ‘nature and nurture’ in the developing oral microbiome in childhood with the support of NHMRC project grants.


Albert Shimmins Fellowship Lecture – Prof. Marco Polin

When: Thursday 3 May, 6:15-7:15pm, followed by refreshments

Where: JH Michell Theatre, Peter Hall Building

A quantitative view of swimming microorganisms

Microorganisms are the most abundant and diverse group of living organisms on the planet, and their activity underpins all major ecosystems. Many of these organisms, including bio technologically and medically relevant species, have evolved the ability to swim, move or crawl and are capable of adapting their motility in response to a variety of external stimuli (e.g. mechanical, chemical, light). Motility is currently believed to confer a selective advantage, especially in environments where nutrients are scarce and ephemeral, like most of the world’s oceans.

It is becoming increasingly clear, however, that a quantitative interdisciplinary approach is needed in order to understand active motion at the cellular scale, pulling together expertise from disciplines ranging from microbiology to physics, mathematics and engineering. Here,

Marco will review some of his work within this area, from microalgae coordinating their microscopic flagella to their ability to swim towards light, while trying to highlight what makes this a fascinating field for a physicist.

Assistant Professor Marco Polin received his PhD in 2007 from the Center for Soft Matter Research at New York University, on measurements of colloidal interactions using holographic optical tweezers (HOTs) and liquid structure theory. From 2007 to 2013 he worked in the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge, first as a Marie-Curie Fellow and then as an EPSRC Postdoctoral Fellow. He investigated eukaryotic flagellar dynamics, using micromanipulation and high-speed imaging of Chlamydomonas reinhardtii and Volvox carteri. During these years at DAMTP, Marco combined experiments and modelling, and i) showed for the first time that flagellar synchronization results from an interplay between hydrodynamic forces and flagellar elasticity; ii) discovered the existence of (biochemical) flagellar beating noise; iii) showed that microalgae regulate flagellar coordination to achieve run-and-tumble-like locomotion; iv) discovered a novel model system to study metachronal waves and performed the most complete characterization of their dynamics; v) measured for the first time the flow field generated by freely swimming microorganisms. This research helped to establish Chlamydomonas as an important system in biophysics, and was recognised by the award of a Junior Research Fellowship at Clare Hall, Cambridge. In September 2013, Marco joined the Physics Department at the University of Warwick as a Lecturer, and built his experimental laboratory, continuing his work in the field of microbial fluid dynamics. Since 2017, Marco has been a Principal Investigator in the Centre for Mechanochemical Cell Biology at Warwick.

 

 


Prof Gene Tyson delivers Annual Biodiversity Lecture for School of BioSciences

Where: BioSciences 2, Turner Theatre

When: Tuesday 24th April 2018 at 12:00noon-1:00pm

Chairperson: Prof Linda Blackall

Expanding our view of the microbial world

Over the last decade, metagenomics has changed the face of microbial ecology. Metagenomics bypasses traditional culture-dependent approaches and holds the promise of genome-level insights into the mostly uncharted microbial world. My research team is applying metagenomic techniques to recover a large number of genomes from many previously uncultivated bacterial and archaeal lineages and from increasingly complex environments. This has greatly expanded our understanding of the metabolic capabilities of these microbes and challenges our understanding of the evolution of many of these processes.

Biography: Professor Gene Tyson (Deputy Director of the Australian Centre for Ecogenomics, University of Queensland) is a microbial ecologist who applies culture-independent molecular approaches to understand the structure and function of in situ microbial communities.

During his dissertation research, Professor Tyson led a landmark metagenomics study on the metabolic potential and population diversity of microbial communities involved in acid mine drainage generation. This demonstrated for the first time that metagenomic data could be used to reconstruct genomes directly from environmental samples.

Following his PhD, he sought more complex microbial communities on which to apply cutting-edge molecular tools. At the Massachusetts Institute of Technology (2006-2009), he conducted postdoctoral research work aimed at understanding the composition, functional potential, regulation, and evolution of complex marine microbial communities at sites around the world’s oceans. A highlight of this research was the development of metatranscriptomics to investigate gene expression in microbial communities, which led to the discovery that marine microorganisms express a surprisingly large number of small RNAs. This has greatly improved our understanding of gene regulation in the marine environment and microbial communities in general.

The seminal research performed in the United States allowed Professor Tyson to return to Australia in May 2009 to start his own research group at the relatively young age of 31 at The University of Queensland (UQ). Professor Tyson’s group uses the metagenomic and metatranscriptomic approaches he helped pioneer to investigate microbial communities in a wide range of different habitats including both engineered systems and natural ecosystems. His research is primarily focused on exploring novel diversity with a special interest in microorganisms involved in methane cycling. He also has a strong interest in bioinformatics and his team actively develop new ways to analyse metagenomic, metatranscriptomic and single cell data.




EMRI scientist Professor Jill Banfield receives 2018 UK Microbiology Society Prize Medal

The Microbiology Society’s Prizes recognise excellence and are awarded to those making significant contributions in the field of microbiology, based on nominations received from the membership.

The 2018 Microbiology Society Prize Medal was awarded to EMRI’s Professor Jill Banfield. Jill investigates the diverse range of microbial communities living in different environments and has made huge contributions to the disciplines of microbiology, earth sciences and phylogeny.

Read more





Number of posts found: 34